Barbara Hammer

Barbara Hammer

bhammer@techfak.uni-bielefeld.de
Institution: Bielefeld University
Department: Machine Learning Group
Position: Head of the Hammer Lab

Sustainable AI, Hybrid Systems, Computational Learning Theory, Applications for Critical Infrastructure

Incremental learning and learning with drift, learning from limited data set, learning with label noise or few labels, reliability of learning, efficient deep learning, fairness of ML; explainable ML, readability of learning, learning with structured data, prototype-based models, graph neural networks, recurrent and recursive models; biomedical applications

  • Continuous Fair SMOTE – Fairness-Aware Stream Learning from Imbalanced Data (2026)

    Authors: Kathrin Lammers, Valerie Vaquet, Barbara Hammer

    Published at: Lecture Notes in Computer Science (Volume: 16068 LNCS)
    DOI: 10.1007/978-3-032-04558-4_27

  • Go with the Flow: Leveraging Physics-Informed Gradients to Solve Real-World Problems in Water Distribution Systems (2026)

    Authors: Inaam Ashraf, Janine Strotherm, Luca Hermes, Barbara Hammer

    Published at: Lecture Notes in Computer Science (Volume: 16022)
    DOI: 10.1007/978-3-032-06129-4_3

  • Studying the Generalization Behavior of Surrogate Models for Punch-Bending by Generating Plausible Counterfactuals (2026)

    Authors: Andreas Mazur, Henning Peters, André Artelt, Lukas Koller, Christoph Hartmann, Ansgar Trächtler, Barbara Hammer

    Published at: Lecture Notes in Computer Science (Volume: 16071 LNCS)
    DOI: 10.1007/978-3-032-04555-3_16

  • Aligning generalization between humans and machines (2025)

    Authors: Filip Ilievski, Barbara Hammer, Frank van Harmelen, Benjamin Paassen, Sascha Saralajew, Ute Schmid, Michael Biehl, Marianna Bolognesi, Xin Luna Dong, Kiril Gashteovski, Pascal Hitzler, Giuseppe Marra, Pasquale Minervini, Martin Mundt, Axel-Cyrille Ngonga Ngomo, Alessandro Oltramari, Gabriella Pasi, Zeynep G. Saribatur, Luciano Serafini, John Shawe-Taylor, Vered Shwartz, Gabriella Skitalinskaya, Clemens Stachl, Gido M. van de Ven, Thomas Villmann

    Published at: Nature Machine Intelligence (Volume: 7)
    DOI: 10.1038/s42256-025-01109-4

  • Generating synthetic genotypes using diffusion models (2025)

    Authors: Philip Kenneweg, Raghuram Dandinasivara, Xiao Luo, Barbara Hammer, Alexander Schönhuth

    Published at: Bioinformatics (Volume: 41)
    DOI: 10.1093/bioinformatics/btaf209

  • Trust, distrust, and appropriate reliance in (X)AI: A conceptual clarification of user trust and survey of its empirical evaluation (2025)

    Authors: Roel Visser, Tobias M. Peters, Ingrid Scharlau, Barbara Hammer

    Published at: Cognitive Systems Research (Volume: 91)
    DOI: 10.1016/j.cogsys.2025.101357

  • A Benchmark for Physics-informed Machine Learning of Chlorine Concentration States in Water Distribution Networks (2025)

    Authors: Luca Hermes, André Artelt, Stelios G. Vrachimis, Marios M. Polycarpou, Barbara Hammer

    Published at: SN Computer Science (Volume: 6)
    DOI: 10.1007/s42979-025-04008-y

  • Development of a digital twin for data-driven modeling of punch-bending processes using a graphical modeling notation (2025)

    Authors: Henning Peters, Andreas Mazur, Ankit Kumar Pandey, Ansgar Trächtler, Barbara Hammer, Werner Homberg

    Published at: At Automatisierungstechnik (Volume: 73)
    DOI: 10.1515/auto-2024-0112

  • Towards Reliable Drift Detection and Explanation in Text Data (2025)

    Authors: Robert Feldhans, Barbara Hammer

    Published at: Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics (Volume: 15346 LNCS)
    DOI: 10.1007/978-3-031-77731-8_28

  • Integration of a digital twin for data-driven modeling of punch-bending processes using the asset administration shell (2025)

    Authors: Henning Peters, Andreas Mazur, Ansgar Trächtler, Barbara Hammer

    Published at: Materials Research Proceedings (Volume: 54)
    DOI: 10.21741/9781644903599-166