Barbara Hammer

Barbara Hammer

bhammer@techfak.uni-bielefeld.de
Institution: Bielefeld University
Department: Machine Learning Group
Position: Head of the Hammer Lab

Sustainable AI, Hybrid Systems, Computational Learning Theory, Applications for Critical Infrastructure

Incremental learning and learning with drift, learning from limited data set, learning with label noise or few labels, reliability of learning, efficient deep learning, fairness of ML; explainable ML, readability of learning, learning with structured data, prototype-based models, graph neural networks, recurrent and recursive models; biomedical applications

  • Towards Reliable Drift Detection and Explanation in Text Data (2025)

    Authors: Robert Feldhans, Barbara Hammer

    Published at: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Volume: 15346 LNCS)
    DOI: 10.1007/978-3-031-77731-8_28

  • Feature-based analyses of concept drift (2024)

    Authors: Fabian Hinder, Valerie Vaquet, Barbara Hammer

    Published at: Neurocomputing (Volume: 600)
    DOI: 10.1016/j.neucom.2024.127968

  • Modularity in Nervous Systems—a Key to Efficient Adaptivity for Deep Reinforcement Learning (2024)

    Authors: Malte Schilling, Barbara Hammer, Frank W. Ohl, Helge J. Ritter, Laurenz Wiskott

    Published at: Cognitive Computation (Volume: 16)
    DOI: 10.1007/s12559-022-10080-w

  • Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles (2024)

    Authors: Maximilian Muschalik, Fabian Fumagalli, Barbara Hammer, Eyke Hüllermeier

    Published at: Proceedings of the AAAI Conference on Artificial Intelligence (Volume: 38)
    DOI: 10.1609/aaai.v38i13.29352

  • Physics-Informed Graph Neural Networks forWater Distribution Systems (2024)

    Authors: Inaam Ashraf, Janine Strotherm, Luca Hermes, Barbara Hammer

    Published at: Proceedings of the AAAI Conference on Artificial Intelligence (Volume: 38)
    DOI: 10.1609/aaai.v38i20.30192

  • Fairness-enhancing classification methods for non-binary sensitive features—How to fairly detect leakages in water distribution systems (2024)

    Authors: Janine Strotherm, Inaam Ashraf, Barbara Hammer

    Published at: PeerJ Computer Science (Volume: 10)
    DOI: 10.7717/PEERJ-CS.2317

  • Image restoration in frequency space using complex-valued CNNs (2024)

    Authors: Zafran Hussain Shah, Marcel Müller, Wolfgang Hübner, Henning Ortkrass, Barbara Hammer, Thomas Huser, Wolfram Schenck

    Published at: Frontiers in Artificial Intelligence (Volume: 7)
    DOI: 10.3389/frai.2024.1353873

  • Challenges, Methods, Data–A Survey of Machine Learning in Water Distribution Networks (2024)

    Authors: Valerie Vaquet, Fabian Hinder, André Artelt, Inaam Ashraf, Janine Strotherm, Jonas Vaquet, Johannes Brinkrolf, Barbara Hammer

    Published at: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Volume: 15024 LNCS)
    DOI: 10.1007/978-3-031-72356-8_11

  • Explaining Change in Models and Data with Global Feature Importance and Effects (2024)

    Authors: Maximilian Muschalik, Fabian Fumagalli, Barbara Hammer, Eyke Hüllermeier

    Published at: CEUR Workshop Proceedings (Volume: 3761)

  • TempXAI: Explainable AI for Time Series and Data Streams 2024 (2024)

    Authors: Zahraa Abdallah, Fabian Fumagalli, Barbara Hammer, Eyke Hüllermeier, Matthias Jakobs, Emmanuel Müller, Maximilian Muschalik, Panagiotis Papapetrou, Amal Saadallah, George Tzagkarakis

    Published at: CEUR Workshop Proceedings (Volume: 3761)